In a nutshell: Approximating integrals using least-squares best-fitting polynomials

Least-squares best-fitting linear polynomials

Given equally-spaced points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$, where the x values are equally spaced by a value h, we can approximate the integral from x_{k-1} to x_{k} or x_{k} to x_{k+1} as follows:

1. Create the Vandermonde matrix $V=\left(\begin{array}{cc}-n & 1 \\ 1-n & 1 \\ \vdots & \vdots \\ -2 & 1 \\ -1 & 1 \\ 0 & 1\end{array}\right)$ and the vector $\mathbf{y}=\left(\begin{array}{c}y_{k-n} \\ y_{k-n+1} \\ \vdots \\ y_{k-2} \\ y_{k-1} \\ y_{k}\end{array}\right)$.
2. Find $\left(V^{\mathrm{T}} V\right)^{-1} V^{\mathrm{T}}$ which can be done most succinctly by calculating $\operatorname{det}\left(V^{\mathrm{T}} V\right)$, which must be an integer, and then $\operatorname{det}\left(V^{\mathrm{T}} V\right)\left(V^{\mathrm{T}} V\right)^{-1} V^{\mathrm{T}}$ must be an $(n+1) \times 2$ integer matrix.
3. Thus, we note that $\left(V^{\mathrm{T}} V\right)^{-1} V^{\mathrm{T}} \mathbf{y}$ defines a_{1} and a_{0} as linear combinations of the y-values.
4. The approximations of the integrals are $\int_{x_{k}-h}^{x_{k}} y(t) \mathrm{d} t \approx\left(a_{0}-\frac{a_{1}}{2}\right) h$ and $\int_{x_{k}}^{x_{k}+h} y(t) \mathrm{d} t \approx\left(a_{0}+\frac{a_{1}}{2}\right) h$.

For example, if we want to find the coefficients a_{1} and a_{0} for eight points, we have

$$
\binom{a_{1}}{a_{0}}=\frac{1}{\operatorname{det}\left(V^{T} V\right)}\left(\operatorname{det}\left(V^{T} V\right)\left(V^{T} V\right)^{-1} V^{T}\right) \mathbf{y}=\frac{1}{336}\left(\begin{array}{rrrrrrrr}
-28 & -20 & -12 & -4 & 4 & 12 & 20 & 28 \\
-56 & -28 & 0 & 28 & 56 & 84 & 112 & 140
\end{array}\right) \mathbf{y}
$$

and thus, our approximations of the integrals would be found using the formula in Step 4.

Least-squares best-fitting quadratic polynomials

Given equally-spaced points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$, where the x values are equally spaced by a value h, we can approximate the integral from x_{k-1} to x_{k} or x_{k} to x_{k+1} as follows:

1. Create the Vandermonde matrix $V=\left(\begin{array}{ccc}n^{2} & -n & 1 \\ (1-n)^{2} & 1-n & 1 \\ \vdots & \vdots & \vdots \\ 4 & -2 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 1\end{array}\right)$ and the vector $\mathbf{y}=\left(\begin{array}{c}y_{k-n} \\ y_{k-n+1} \\ \vdots \\ y_{k-2} \\ y_{k-1} \\ y_{k}\end{array}\right)$.
2. Find $\left(V^{\mathrm{T}} V\right)^{-1} V^{\mathrm{T}}$ which can be done most succinctly by calculating $\operatorname{det}\left(V^{\mathrm{T}} V\right)$, which must be an integer, and then $\operatorname{det}\left(V^{\mathrm{T}} V\right)\left(V^{\mathrm{T}} V\right)^{-1} V^{\mathrm{T}}$ must be an $(n+1) \times 3$ integer matrix.
3. Thus, we note that $\left(V^{\mathrm{T}} V\right)^{-1} V^{\mathrm{T}} \mathbf{y}$ defines a_{2}, a_{1} and a_{0} as linear combinations of the y-values.
4. The approximations of the integrals are $\int_{x_{k}-h}^{x_{k}} y(t) \mathrm{d} t \approx\left(a_{0}-\frac{a_{1}}{2}+\frac{a_{2}}{3}\right) h$ and $\int_{x_{k}}^{x_{k}+h} y(t) \mathrm{d} t \approx\left(a_{0}+\frac{a_{1}}{2}+\frac{a_{2}}{3}\right) h$.

For example, if we want to find the coefficients a_{2}, a_{1} and a_{0} for eight points, we have

$$
\left(\begin{array}{l}
a_{2} \\
a_{1} \\
a_{0}
\end{array}\right)=\left(\left(V^{T} V\right)^{-1} V^{T}\right) \mathbf{y}=\frac{1}{56448}\left(\begin{array}{rrrrrrrr}
2352 & 336 & -1008 & -1680 & -1680 & -1008 & 336 & 3252 \\
11760 & -1008 & -9072 & -12432 & -11088 & -5040 & 5712 & 21168 \\
7056 & -2352 & -7056 & -7056 & -2352 & 7056 & 21168 & 39984
\end{array}\right) \mathbf{y}
$$

and thus, our approximations of the integrals would be found using the formula in Step 4.

